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1 Background 

1.1 ASP Project Background  
The original goal of the Advanced Security Proxies (ASP) project was to develop high-speed 
network firewall technology that combines proxy-based firewall mechanisms with high-speed 
network gateways. The resulting combination is a new firewall proxy platform that provides the 
strong security of proxies for high-speed networks that current firewall technology did not 
address in a scalable manner. Rather than sacrificing speed for security, our approach uses 
flexible techniques that provide for optimal or near-optimal tradeoffs between performance, 
security, and functionality. 
 
We have developed technology that can control Internet Protocol (IP) traffic carried by high-
speed networks (multi-hundred-megabit per second or faster). We have implemented low-level 
protocol handling techniques that are applicable to any high-speed switched media. The 
techniques include mechanisms for dynamic “as-needed” re-assembly of lower-level network 
protocol data units (PDUs) to higher-level PDUs, where the assembly and security processing is 
performed by interplay between multiple tiers of protocol handling. The purpose of these 
techniques is to support the functionality of existing firewall proxies, but on a new platform that 
is oriented toward high-speed networks. 
 
The focus on proxy support is driven by the goal to support the strongest firewall security 
mechanisms, those that examine application protocol data and base security decisions on content. 
This is precisely what firewall proxies do*. Therefore, our new ASP firewall platform supports 
proxies in a manner that is as close as possible to the traditional manner, while eliminating 
current firewalls’ architectural barriers to high-speed processing. The elimination of these barriers 
is based on a few principals fundamental to ASP: 
 
• Process application-level data streams for strongest security functionality. 
• Perform application-level processing only as needed. 
• Data re-assembled as needed, and only as much as needed. 
• Multiple tiers of reassembly, including conventional packet filtering where that is sufficient. 
• Ability to adaptively switch between tiers as conditions change. 
 
In our prototypes, we demonstrate how to use techniques that meet these principles, to support 
some currently important proxied protocols.  In the following, we use the examples of a “client-
protecting” firewall configuration and a “server-protecting” firewall configuration.  The “client-
protecting” configuration is typified by being “nearer” the client than the server, protecting the 
client’s network from hostile or unintended network activity from the outside world.  The 
“server-protecting” configuration is typified by being nearer the server, likewise protecting the 
server’s network from hostile or unintended traffic.  Note that it is increasingly common for 

                                                      
*Stateful packet inspectors (SPIs) are another type of firewall component that also can examine application protocol 
data content. SPIs originated as packet filtering technology, but are becoming functionally similar to proxies. The other 
distinction between SPIs and proxies is that proxy software (usually user space software) tends to be more separated 
from the supporting protocol handling (usually a kernel TCP/IP stack). We support the traditional distinction between 
proxy code and protocol code. Nevertheless, any application-protocol-analysis function should be supported by our 
ASP platform, whether the function is currently implemented in the context of a proxy or a SPI or both. 
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transactions to traverse both client-protecting and server-protecting firewalls, although the 
“opposite-side” firewall is intentionally transparent to the near-side firewall. 

2 Technical Work Accomplished 

2.1 As-Built ASP Architecture 
ASP is a Scout1-based, hybrid proxy/packet-filtering firewall platform.  The Scout operating 
system supports flexible protocol development and experimentation, and has interesting features 
for on-host packet routing adaptability. During the early design phase, Scout path and router 
concepts provided a good vocabulary for describing the ASP adaptive reassembly architecture.  
Coincident work2 indicated that Scout was not only well suited for “adaptively switching between 
tiers of reassembly”, it had already demonstrated the facility.   
 
One key feature of the Scout OS, fundamental to its capability for adaptable reassembly, is its 
message de-multiplexing functionality.  For our purposes, this de-multiplex phase of message 
processing allows all packets belonging to a given flow to be rapidly routed through the fastest 
possible path through the firewall.  This de-multiplex machinery is centralized and flexible, 
allowing flows to be redirected programmatically. 
 
ASP is a “hybrid” platform in its ability to dynamically shift client-to-server network connections 
from proxied state to packet-forwarded state and back again, programmatically, based on security 
policy and proxy direction.  Reference examples have been written to demonstrate four basic 
forms of packet processing activity: static TCP-based stream forwarding, static IP-based packet 
forwarding, dynamic IP packet forwarding based on one-time-use proxy decisions, and dynamic 
TCP-based stream forwarding based on one-time-use proxy decisions.  In addition, the dynamic 
TCP-based stream forwarding proxies have facilities for either inline stream inspection or offline 
stream inspection, allowing implementation of security policies based on data location as well as 
data content. 
 
Static TCP-based stream forwarding and static IP-based packet forwarding are well known and 
widely available in commercial firewall products3, and will not be further discussed in this paper.  
Dynamic IP and TCP forwarding, however, are fairly unique and are the features that differentiate 
ASP from traditional COTS firewalls. 
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Figure 1 ASP Proxy Architecture 

2.1.1 TCP Splicing in a Nutshell 
The core of ASP functionality is embodied by the “TCP Splicing” concept.  The ASP firewall 
seeks to marry proxy-style security decisions and router-speed performance, compromising 
performance only when security decisions must be made.   Traditional “proxying” firewalls 
conduct their work using two pairs of connections: the client connects to the proxy, and the proxy 
in turn connects to the server.  The proxy application actively interprets and copies commands 
and data between the client- and server-side connections.  This arrangement yields high security, 
as the only data that enters the protected network is data that has been vetted by the proxy.   
 
The traditional alternative to a proxying firewall is a “packet filtering” firewall.  Such firewalls 
are configured with rules to allow certain classes of traffic to pass unimpeded through the 
firewall.  These classes are typically described with rules like: “Forward packets originating from 
any machine on the protected network onto the unprotected network” and “Forward packets 
originating from either the FTP-DATA port or the HTTP port of machines on the unprotected 
network onto the protected network”.  These rules are installed into the firewall at configuration 
time and are static.  This arrangement yields high performance, as the packet forwarding 
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decisions can made on a frame-by-frame basis and can in general be performed at or near the 
device driver level. 

 
Figure 2 - Security/Performance Continuum 

If you consider these two alternatives as being at the opposite ends of a scale, modern firewalls 
tend to fall somewhere closer to the middle.  “Adaptive” proxies establish short-lived packet 
filtering rules under control of an application-level proxy, improving performance by decreasing 
the amount of work they must perform on lower-risk traffic.   “Stateful” packet filtering firewalls 
perform rudimentary protocol state following and packet inspection, improving security by 
increasing the processing on higher-risk traffic. 
 
ASP proxies split this gap once again, following TCP state, yet allowing “trusted” or low-risk 
traffic to transit the firewall at near-device-driver levels.  ASP proxies enjoy the added flexibility 
of shifting the inspection strategy in response to an updated threat assessment. Inspection may be 
either Passive or Gated. Passive inspection describes the case where all or an arbitrary subset of 
packets transiting a connection may be simultaneously delivered up to the proxy. Gated 
Inspection describes the case where packets are submitted to the proxy for approval before any 
packets gain admittance to the network. The proxy may switch between these modes at any time.  
 
Proxy connections requiring security decisions can be grouped into two categories: those which 
“promote” the security level on an existing pair (client – firewall, firewall – server) of 
connections, and those in which the security level of an anticipated connection pair can be 
established before this new connection has taken place.  ASP handles these cases using NETTAP 
and IPCUT mechanisms, respectively. 

2.1.2 NETTAP 
A “server-protecting” HTTP proxy typifies the NETTAP class of protocols.  Consider a security 
policy in which a web server resides on a protected network behind a firewall.  The firewall 
defends the server from external attacks while still providing access to approved content by 
trusted clients.  This firewall might employ a screening HTTP proxy that examines client 
credentials and validates HTTP GET requests before passing them along to the web server, but 
has little or no interest in examining the responses to these requests. 
 
ASP employs NETTAP technology to address this security policy by interposing a partial HTTP 
filter in the processing stream. This filter, HTTPF, performs both the initial connection 
establishment and termination commonly found in any HTTP proxy.  In addition, once the client 
credential and URL validation requirements are satisfied, HTTPF sends a SPLICE control 
messages to NETTAP to initialize the TCP splicing mechanism to edit and forward packets with 
no further intervention from the HTTPF proxy.  In effect, packets recognized as being “on” the 
spliced TCP connection are forwarded at the same rate as an IP router.  The editing performed 
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upon the packet entails mapping the sequence numbers and ports/addresses to match the 
expectations of the respective hosts. 
 
ASP supports security policies that require periodic re-examination of the data stream in the 
response by providing SNOOP technology (Figure 3).  SNOOP allows HTTPF to continue to 
receive the reassembled TCP stream, “tapped” off the spliced TCP connection.  While NETTAP 
prevents HTTPF and the TCP stack on the ASP firewall from actively participating in transport 
control (i.e. congestion management, flow control, and dropped packet detection), those 
management messages generated by the client and server are still forwarded and acted upon by 
the ASP firewall. 
 
A third type of security configuration, INSPECT, is supported as well.  The INSPECT model, in 
which HTTPF and NETTAP collaborate in delivering traffic, allows HTTPF to gate traffic as it 
passes through a NETTAP store-and-forward queue.  ASP does not specify the policy for this 
gating mechanism, although one might envision bandwidth-limiting policies based on URL, or an 
adaptive content scanning mechanism tied to external intrusion detection devices.  The interaction 
of this “mute” store-and-forward queue on TCP’s congestion management and flow control has 
not been fully investigated.   

 
Figure 3 NETTAP Snoop Architecture 

2.1.3 IPCUT 
The FTP proxy typifies the IPCUT class of proxies. FTP (File Transfer Protocol) transactions 
utilize two TCP connections – a command connection, over which control and response messages 
are exchanged between the client and the server, and a data connection, over which bulk data 
(mostly files and directory listings) is transferred.  The FTP client initiates the command 
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connection to the server, and traditionally† the server initiates data connections back to the client, 
to a client-specified IP address and TCP port. 
 
We have coined the phrase “Bifurcated Command/Data Protocols”, or BCDP’s, to describe these 
dual-connection protocols.  By contrast, we call the single-connection equivalent an ICDP, or 
Interleaved Command/Data Protocol.  As is typically the case in a bifurcated command/data 
transfer, proxying the command connection is an incomplete solution; knowledge of the protocol 
is required to parse out connection parameter information and prepare the firewall to securely 
accept subsequent associated connections.  IPCUT provides the mechanism for accepting these 
subsequent connections with a high degree of confidence in the identity of the initiator and 
recipient. 
 
IPCUT adds a concept of a “wildcarded passive open”, in which four components of the five-
tuple required for a TCP connection (source and destination IP address, destination TCP port, 
protocol ID) must be matched before the “accept” is completed.  The datagram that satisfies the 
wildcard listen is used to fill in the final component of the five-tuple (the source TCP port), the 
wildcard becomes “nailed-down” and a fully active open connection.  
 
Consequently, an IPCUTproxy improves firewall security over traditional high-speed firewalls, 
which rely on protocol specifics (e.g. knowledge of pre-defined TCP source port for FTP data 
connections) and allocate permanent pass-through rules for datagrams originating from those 
TCP ports.  Because these permanent pass-through rules are stateless and necessarily well known, 
a common attack crafts a packet that originates from one of these well-known source ports in 
order to pass unmolested through the firewall. 

 
Figure 4 - IPCUT Architecture 

                                                      
† The most recent RFCs describing the File Transfer Protocol describe”Passive” FTP data transfers, in which the client 
initiates both the command and the data connections; the parameters for the data connection are returned in the 
response to a “PASV” command. 
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2.2 Proxies 
For any given byte in-flight on the Internet, chances are better than 70% that byte either belongs 
to an HTTP or an FTP-data connection4.  For any given packet, chances are nearly 50/50 that 
packet belongs to an HTTP response or an FTP-data connection. Other protocols such as SMTP 
(mail) and proprietary streaming media (e.g. RealAudio) are completely overshadowed by bulk 
data and streaming media transfers moving through HTTP and FTP connections.  For this reason, 
we focused our attention on these ubiquitous data transfer protocols. 

2.2.1 HTTP 
The Hypertext Transfer Protocol (HTTP) delivers Hypertext Markup Language (HTML) pages 
across the World Wide Web.  HTTP Servers, typically running on commodity operating systems, 
provide data and services via HTTP-based requests and responses.   

2.2.1.1 HTTP Protocol 
The HTTP standard5 defines a simple GET/POST syntax for client-initiated requests, and follows 
the MIME standard6 for encapsulating and describing responses.  Recent analysis has shown the 
typical HTTP request is small (on the order of <500 bytes7) and the responses exhibit a heavy-
tailed8,9 distribution.  [I.e. infinite variance] The significance here is that the client-initiated 
(GET/POST) portion of the transaction contains all the information required to authenticate the 
client’s credentials, validate the access, and initiate the response transfer.  For the “server-
protecting” firewall configuration, once the firewall has determined the safety of the HTTP 
request, the response portion of the transfer can proceed unimpeded.   For a “client-protecting” 
firewall configuration, it may be desirable for the firewall to inspect both the client-initiated 
portion of the transaction (for access to “approved” URLs), and the server response (for safety 
inspection of mobile code). 

2.2.1.2 HTTPF Proxy 
The HTTPF proxy implements both variants: client-protecting INSPECT/SNOOP-based 
proxying, and server-protecting SPLICE-based request validation. The HTTPF proxy can specify 
which of SPLICE, SPLICE+SNOOP, or SPLICE+SNOOP+INSPECT functionality should be 
utilized when the cut-through path is created‡.   

                                                      
‡ At the moment you set httpf_use_{join,snoop,inspect} as appropriate in GDB to get the desired behavior at 
run time. 
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Figure 5 HTTPF Proxy Involvement 

2.2.2 TELNET 
Telnet10 is a simple interactive protocol for remote command-line terminal access.    While Telnet 
sessions consume a tiny portion of Internet traffic, the application itself serves a useful purpose 
for firewall diagnosis, and illustrates a simple Interleaved Command/Data Protocol (ICDP). 

2.2.2.1 Telnet Protocol 
The Telnet protocol is composed of a single TCP connection, with command messages 
interleaved within the data stream differentiated from the actual data by a special character 
sequence.  Occurrences of this special character sequence within the data stream are distinguished 
via a “stuffing” operation, so that a single occurrence in the data stream will actually appear on 
the wire as two successive sequences.   
 
The Telnet protocol includes a provision for user authentication, however password strings are 
typically sent in the clear over the wire.  Some hosts extend the telnet login exchange with 
challenge-response or similar secure mechanisms. 
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2.2.2.2 fiTelnet§ Proxy 
The fiTelnet proxy adds a simple authentication step to the Telnet authentication exchange.  This 
is a proof-of-concept client-protecting firewall configuration.  The fiTelnet proxy accepts an 
outbound client connection, prompts for a secret password, and then establishes the outbound 
telnet session.  Once the outbound telnet session is established, the proxy splices the incoming 
client-side connection and the outgoing server-side connection together and allows the server’s 
user authentication exchange to take place.  Any clients not possessing the secret password are 
not allowed to utilize the proxy. 
 
The fiTelnet proxy provides a useful comparison point, as it most closely matches the traditional 
proxy model. All data is reassembled into complete streams, delivered up the inbound TCP 
connection to the “application level” (although no such distinction between application and kernel 
exists in Scout), copied to the outbound TCP connection, and re-packetized for transmission.  
Despite the interleaved command/data characteristics of the protocol, fiTelnet does no 
interpretation in mid-stream.  We use the fiTelnet proxy as a baseline performance metric. 

2.2.3 NETPERF 
Netperf11, while not a widely deployed Internet protocol, is nonetheless a useful and widely 
accepted diagnostic tool for network performance.  Netperf performance statistics are available 
for a wide range of host hardware, operating systems, and network media, making the Netperf 
performance statistic the lingua franca of network performance analysis. 

2.2.3.1 Netperf Protocol 
Netperf is a flexible Bifurcated Control/Data Protocol that uses a TCP command channel and can 
negotiate TCP, UDP, and media-specific (e.g. HIPPI) data channels with various characteristics. 
The client instructs the server to prepare for a data transfer task with a fixed-format block of data, 
and the server responds with a similar fixed-format response block containing IP addresses and 
TCP or UDP port numbers for the subsequent client-initiated data connection.  Upon completion 
of the data transfer task, the server reports on the performance characterization from his 
perspective (e.g. TCP messages sent), and the client synthesizes the aggregate performance 
characterization using his own perspective as well 

2.2.3.2 fiNetperf Proxy 
The fiNetperf proxy (Figure 6) implements a subset of the Netperf protocol, sufficient for a 
server-protecting firewall configuration, and offering only TCP-based performance testing.  The 
fiNetperf proxy parses and forwards client messages to the server, and parses and forwards server 
responses to the client.  In addition, the fiNetperf proxy interprets server responses with respect to 
TCP_STREAM connection testing. 
 
The fiNetperf proxy is intended as a client-protecting firewall configuration, however, one in 
which the firewall is not actually interested in the content of the data connection.  Indeed, the 
firewall would prefer to do as little with the data connection as possible, since this connection is 
the one that has the “clock running” on it.  This configuration is implemented by allowing the 
proxy to do a “subnet listen”, accepting connections from any client on the protected net to the 
Netperf service port (12865), and parsing the IP destination address from the TCP connection 
                                                      
§ The “fi” prefix, as in fiNetperf, fiTelnet, fiFTP, etc., is a convention adopted from the Scout system, signifying a 
“filtering” router, as opposed to a purely functional router.  A Scout router provides connectivity and protocol 
processing sufficient to satisfy end-host requirements.  A filtering router allows a restricted subset of the protocol based 
on some level of protocol-specific access permission.  
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parameters.  The proxy, in turn, establishes an outgoing TCP connection to the Netperf service 
port on the intended Netperf server. 
 
The fiNetperf proxy establishes an IPCUT connection path upon receipt of the 
TCP_STREAM_RESPONSE connection setup response message.  This IPCUT connection path 
actually requires the 5 parameters of a TCP connection (Source IP Address & Port, Destination IP 
Address & Port, and Protocol Number) to be known in advance in order to populate the Scout de-
multiplex map.   The fiNetperf proxy uses the extended IPCUT “wildcarded passive open” 
feature to allow a wildcarded connection path, whose parameters may be incompletely specified 
until known. When the client receives the edited TCP_STREAM response message and initiates 
the data connection to the server (via, transparently, the firewall), the final parameter (the Source 
TCP port) required for the Scout de-multiplex machinery is available and completes the 
connection path specification.   

 

Figure 6 fiNetperf Proxy Involvement 

2.2.4 FTP 
FTP12 is a BCDP file transfer protocol. FTP is a much older protocol than HTTP, and was 
commonplace prior to WWW clients and servers being widely deployed.  As such, there are still 
large bodies of data available on legacy FTP-based servers around the world. 
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2.2.4.1 FTP Protocol 
FTP uses TCP connections for both command and data traffic.  Command traffic exchanges user 
credentials and simple data transfer initiation commands.  Commands and responses that initiate 
data transfer include parameters for data connection establishment.  Files and “large” responses 
traverse these data connections, while status-messages and “small” responses are delivered in-line 
in the command channel.  FTP Data connections may be either “active” or “passive”, determined 
by client activity.  In active FTP data connections, the client directs the server to an opened, 
listening port on the client machine.  The server, in turn, initiates a connection to that port in 
order to carry out the data transfer.  In passive FTP data connections, the client indicates a desire 
to initiate a passive connection using the “PASV” command.  The server’s response directs the 
client to a new open, listening port on the server.  The client, then, initiates the data transfer by 
connecting to the indicated port.  The originating host nonetheless carries out data transfer once 
this connection is established. 

2.2.4.2 fiFTP Proxy 
The fiFTP proxy (Figure 7) implements a subset of the FTP protocol; sufficient for server-
protecting firewall configurations.  The proxy parses FTP command messages from the client, 
and command response messages from the server, and forwards these messages respectively.  
Data channel negotiation messages (i.e. PORT commands) are interpreted and redirected to a 
wildcarded port the proxy opened on the firewall.  When the server initiates the data connection, 
the firewall observes the final connection parameter and “nails down” the wildcarded port.  From 
this point on, all packets in the TCP data connection are forwarded from source to destination as 
soon as they are recognized. 
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Figure 7 FTP Proxy “GET” Involvement 

 

3 Research Results 

3.1 Hotspots 
ASP has augmented the Scout operating system with profiling and “micro-benchmarking”, 
message-specific timing statistics for the various phases of protocol processing.  As in any 
system, it is often the case that a few “hot spots” dominate performance characteristics, and 
optimization efforts are best focused here.  Micro-benchmarks have helped us to isolate these 
hotspots and make performance predictions based on “what-if” models. 
 
ASP code was profiled utilizing the free-running CPU counter registers available in both the 
Compaq Alpha AXP-series and the Intel Pentium-series microprocessors.  Scout “message” 
structures were augmented with several independent timestamp fields.  Each processing layer 
accounted time spent within that layer for each individual message.  As layers complete 
processing for a given message, the accumulated processing time for that message is added to the 
appropriate histogram ring-buffer. Later, based on operator intervention, (i.e. a debugger 
breakpoint) the ring-buffers are examined and a histogram chart is produced.  One of these 
histograms is shown in Figure 8.  The numeric information in these histograms is typically 
reformatted into graphical charts for presentation (see Figure 9 and Figure 10) 
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NOTE:  The histogram instrumentation, while fairly lightweight, is still an intrusive measurement 
device.  For this reason, all raw performance measurement, including throughput measurement, 
are made with histogram collection disabled.  All results below, which group throughput with 
microbenchmark histograms, reflect multiple collections of benchmark runs. 
 

 

Figure 8 Processing Time Histogram 

 

 

 
Figure 9 Derived Processing Histogram 
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Figure 10- Derived Cumulative Frequency Distribution 

 

3.2 Performance Graphs and Discussion 
To demonstrate the performance improvement potential of the ASP architecture, we chose to 
compare the throughput rates and processing requirements of a simple “fully proxied” TCP 
connection versus a cut-through BCDP utilizing the IPCUT framework.  The fully proxied 
baseline case uses a non-authenticating version of the fiTelnet proxy, configured to copy data at 
the application layer from one inbound TCP connection to a corresponding outbound TCP 
connection, and vice versa.  The cut-through IPCUT proxy is the fiNetperf proxy described 
above.   

3.2.1 Fully Proxied 
Baseline measurements were performed using the ttcp13 program.  Throughput was measured 
with the two standard MTU sizes for Gigabit Ethernet networks, 1500 bytes and 9000 bytes.  
Microbenchmark data was collected for a representative sample of traffic.  Tests were performed 
with Compaq DS10 (Alpha 21264 processors) and 3Com 3c985 Gigabit Ethernet interfaces.  
Three DS10’s were deployed in the testbed:  One each as source, sink, and firewall.  Source and 
sink nodes were running the Linux operating system running version 2.4 kernels and device 
drivers.  The firewall node was running ASP. 
 
Fully proxied network traffic is fairly CPU intensive, as is indicated by the following timing 
distribution diagrams.  Throughput for MTU 9000 packets is roughly twice that for MTU 1500 
packets, despite the sixfold increase in size, indicating that there is a non-linear cost associated 
with processing packets of larger payload. 
 

 
Figure 11- Steady-state throughput for the full proxy case. 

The composite timing distribution for fully proxied traffic (Figure 12, below) shows the mode at 
roughly 1160 microseconds total processing time per second.  The subsequent timing 
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distributions show that this time is roughly distributed as half Ethernet+IP processing (Figure 13, 
below), and half TCP processing (Figure 14). 

 

 
Figure 12 - Device-level timing distribution for the fully proxied case. 

 

 
Figure 13 - Timing distribution for combined Ethernet and IP processing for the fully 

proxied case. 
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Figure 14 - TCP-level timing distribution for the fully proxied case. 

 

3.2.2 Cut-Through 
ASP improvements to the basic firewall architecture are demonstrated below.  The Netperf 
protocol was used to measure TCP forwarding at the IPCUT level.  Machine configuration was 
identical to the Fully Proxied configuration above. 
 
 

 
Figure 15 - Steady-state throughput for the cut-through case. 

As in the Fully Proxied case, relative throughput between the MTU 9000 case and the MTU 1500 
case indicates the cost of processing is tied more strongly to per-message factors rather than per-
byte factors.  However, the removal of the TCP processing overhead substantially reduces the 
amount of processing required per message and substantially improves overall throughput.  The 
composite timing distribution (Figure 16) is shifted dramatically with the mode appearing at 36 
microseconds and the majority of per-message processing consuming less than 100 microseconds.  
Indeed, Figure 17 and Figure 18 show that virtually all processing outside the device driver 
consumes less than 10 microseconds, or 10% of the CPU budget. 
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Figure 16 - Device-level timing distribution for the cut-through case. 

  
 

 
Figure 17 - Timing distribution for combined Ethernet and IP processing for the fully 

proxied case. 
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Figure 18 - Timing distribution for the IPCUT fast path for the cut-through case. 

3.2.3 Comparative Performance 
While protocol-versus-protocol comparisons are somewhat deceptive, it is interesting to note the 
relative performance characteristics of host-based packet forwarding, direct (bare-wire) 
throughput, and ASP-based secure packet forwarding. Figure 19 shows a rough spectrum of the 
kinds of throughput achieved by the following configurations: 

• ASP MTU 1500 – Netperf across Scout/ASP firewall running IPCUT-derived proxy with 
1500-byte MTU. 

• ASP MTU 9000 – Netperf across Scout/ASP firewall running IPCUT-derived proxy with 
9000-byte MTU. 

• Linux MTU 1500 – Netperf across Linux running as a simple IP-Forwarding router, 
1500-byte MTU. 

• Linux MTU 9000 – Netperf across Linux running as a simple IP-Forwarding router, 
9000-byte MTU. 

• Direct MTU 9000 – Netperf across Point-to-Point (crossover cable) connection between 
source and sink, no firewall, 9000-byte MTU. 

• Ttcp mtu 1500 – Ttcp across Scout/ASP firewall running TCPF-derived proxy with 1500-
byte MTU. 

• Ttcp mtu 9000 – Ttcp across Scout/ASP firewall running TCPF-derived proxy with 9000-
byte MTU. 
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Comparative Performance
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Figure 19 - Comparative Performance 

The comparative results indicate that the ASP IPCUT configuration runs at near-bare-wire 
speeds, 1500-byte MTUs are much less efficient than 9000-byte MTUs, particularly for ASP but 
even for simple packet forwarding, and, interestingly, that the ASP IPCUT configuration presents 
better performance than the Linux packet-forwarding router for large MTUs. 

3.3 Patents Applied 
Our increasing level of expertise with Scout and the modifications to the Scout TCP stack has 
lead us to investigate other functional areas within advanced networking.  Scout is a comfortable 
platform for network stack experimentation and has a powerful vocabulary for expressing certain 
types of network concepts.  Two patent applications have been filed based on our work and 
experience with the Scout platform. 

3.3.1 Shared Congestion State 
Our enhancements to the Scout TCP congestion management facility, originally intended to 
improve responsiveness to network congestion and collision avoidance, presented us with an 
opportunity to improve the performance of firewall “clusters”.  Traditionally, hosts maintain 
congestion and window information per network connection.  Any new connections recalculate 
this congestion state information; walking through the same slow-start method and slowly 
ramping receive windows up until finding the break-even point of window size versus bandwidth 
availability.  For a proxying firewall, this slow startup is quite limiting, as it is quite common for 
a web browser to establish multiple connections to the same host simultaneously in order to 
parallelize data fetches and better utilize network bandwidth. In fact, each new connection suffers 
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the same slow-start delay while ramping up to the full bandwidth available to the connection.  For 
the typical small HTTP fetch, the slow-start delay dominates the transaction time. 

 
Figure 20 - Shared CCB State 

ASP’s Scout stack maintains “shared” congestion state, in which it maintains per-host (rather than 
per- connection) state.  The benefit is that new TCP connections to recent hosts will not suffer 
from slow-start and can begin transferring data with the most recently calculated optimal 
parameters.  This shared congestion state is actively maintained by one single connection, the 
“master”, who periodically updates the other “slave” congestion state copies. Controller 
responsibilities are rotated in round-robin fashion, when the current round-trip-time sample is 
complete, from active connection to active connection.  This minimizes the risk that a silent 
connection will allow congestion statistics to stagnate for other active connections to that same 
host.  
 
The patentable idea is that this shared congestion state is valuable not just for a single firewall 
machine, but also across multiple constituent firewalls in a firewall cluster.  The system described 
by the patent marshals the shared congestion state information on each firewall host and makes 
this information available to all the other cooperating firewalls in the system.  In the event a 
firewall chooses to make a connection to a machine outside of his current “working set” of 
connections, the firewall can ask his peers for reasonable initial congestion state values.  The 
congestion state information for that host includes Round Trip Time estimates (RTT), Path 
Maximum Transmission Unit (PMTU), and Congestion Window Size (CWIN).  

3.3.2 Passive Latency Measurement 
Network device performance characterization is generally described by a number of variables: 
bandwidth, cost, reliability, and latency.  Bandwidth is straightforward to measure; Netperf, 
described above, is a common measurement tool.  Cost is easy.  Reliability is estimable.  Latency 
is hard.   
 
Hardware-based measurement devices inject easily recognizable data patterns into a device and 
watch for these patterns to emerge from the device.  Latency is calculated by the time difference 
between the injection and recognition.  While these “flag” frames can be injected into bridges, 
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switches, or hubs to obtain accurate and fair latency measurements, active devices such as routers 
and firewalls are a different story. It is conceivable for a firewall or router to be configured to 
forward “flag” frames unimpeded in support of latency measurement, however this is hardly a 
fair estimate of the true latency experienced by actual traffic.   
 
On the other hand, a measurement tool with the intention of estimating latency in terms of round-
trip time could generate realistic traffic through the active device.  While this technique is more 
likely to yield fair results (assuming the device can actually generate “realistic” traffic), the 
measurement is not directly reducible to the latency of the device under test.  Many more 
measurements must be performed to isolate the various round-trip times in the equation and 
reduce the number of external delays.  At best, the measurement would represent the aggregate 
latency experienced transiting through the network device by the outbound message plus the 
return message.  
 
Furthermore, it is not always feasible to inject additional traffic into an existing network 
configuration; it may be the case that additional measurement traffic will unfairly skew the results 
(suppose the system is running at or close to capacity and additional traffic will congest the 
network.)  Finally, it is possible that a router or firewall vendor could anticipate measurement 
traffic streams and grant preferential treatment to any suspected measurement streams.  Such 
systems would falsely represent their performance with respect to real world traffic. 
 
What is needed is a method of passively measuring latency through a network device.  We have 
applied for a patent on a design for such a device, based on Scout.  This scheme works by 
collecting traffic on the input and output legs of the device-under-test and correlating the traffic 
streams based on the various protocol layers and transformations recognized.  As correlations are 
achieved, the timestamps of the constituent bytes are compared and latency measurements are 
reported.  Since correlations are being attempted at multiple levels, (MAC-level, IP datagram 
level, TCP level, application level, etc.) multiple simultaneous estimates of latency will be 
reported.  Latency is expected to vary over time, as well, based on changes in internal processing 
requirements due to data stream and hardware events.  We anticipate dynamically updated 
“Latency Gauges” which indicates a low-water and high-water mark of latency measurements at 
the various levels of correlation.   

 
Figure 21 - Passive Latency Measurement Device 
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3.4 Scout Strengths vs. Scout Weaknesses 
One of the secondary benefits of the ASP projects has been the independent evaluation of the 
Scout platform as a network device deployment tool.  To our knowledge, NAILabs is the only 
research body outside the Arizona/Princeton community to use Scout in a large-scale exercise.  
We now take this opportunity to critique the Scout platform as a network device RAD (Rapid 
Application Development ) tool. 

3.4.1 Shoulders of Giants 
The Scout codebase is a powerful, well-designed and well-documented, radical new direction for 
operating system design.  Scout provides a rich library of OS building blocks, including zero-
copy memory buffers, efficient hash tables, synchronization primitives and a complete, high-
performance TCP/IP networking stack.  Without these core components, implementing a high-
performance firewall from scratch would be a formidable, if not impossible task.  We owe a huge 
debt of gratitude to the Scout designers and developers for laying the foundations of ASP in 
Scout. 
 
That being said, the Scout codebase suffers from a lack of contributors.  Device driver 
development has stagnated (with the notable exception of the SILK14 work and its support for 
native Linux devices.)  Less glorious projects like the user interface and the configuration system, 
while desperately in need of improvement, take a backseat to trendy or experimental OS 
improvements.  This is not surprising of a common vehicle for networking-related Masters and 
Doctoral theses.  However, growth of the user community is hampered by the lack of such 
superficial features.  For better or worse, the addition of superficial features is directly 
proportional to the size of the developer community. 
 
The Open Source model has shown that below a certain size of developer base, the burden of 
maintenance and the concept of ownership remain with the original developers15.  As the Scout 
system has an academic “founder” constituency, the ownership changes hands every few years as 
the academic and student contributors move through their careers.  We have seen recent renewed 
activity out of Princeton (Larry Peterson’s new home), so the situation seems to be improving. 

3.4.2 Useful “Path” Abstraction 
The Path concept, key to the Scout Architecture, is a powerful abstraction of data flow.  Paths 
map directly into the ASP processing model of trusted flows. We like the path, and plan to use 
this abstraction method for future work, both in the patented ideas presented in Section 3.3 as 
well as in future DARPA networking research endeavors. 

3.4.3 Flexible but Immature Configuration Mechanism 
The original designers provided a configuration “Little-Language”16 for describing the protocol 
processing elements and their interconnection.  This arrangement allows a great deal of flexibility 
in laying out the networking components.  Protocol modules (“routers”) are described with 
named, typed interfaces in a specification (.spec) file.  Router configuration is performed at 
compile time, and the configuration process creates header files and populates a C source file 
which instantiates each router instance.   
 
While this flexibility is powerful, and the degree of abstraction it provides does allow the entire 
“Fast Path” concept, flexibility is a two-edged sword.  During development, router configuration 
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specifications (config.graph files) are practically static.  Moreover, subgraphs of the 
configuration graph are partially ordered (e.g. TCP is always at least indirectly “above” IP, and 
anticipates this relative positioning in the its code) despite the fact that the configuration language 
has no means to ensure this relationship and no mechanism for the routers to indicate such 
dependencies.  The configuration flexibility, therefore, is incomplete and often unwarranted. 
 
The increased complexity associated with maintaining the layer of indirection between routers 
often results in code that is subtly broken with respect to the linkage indirection pointers.  To 
make matters worse, the relatively static nature of a developer’s working config.graph file 
implies that flaws in the linkage code between routers aren’t revealed until the config.graph file 
changes substantially, typically when a different developer picks up previously “working” code 
and modifies the router configuration.  Subtle indirection flaws are bad enough in your own code; 
in another’s code, they are nearly intractable. 

3.4.4 Problematic Integration of “round-trip” Routers 
The original Scout design documents discuss host requirements and describe video display units 
and web servers.  The Scout data structures embed a “next” and “back” directionality, which 
permeates the system. In a host whose function is pure data-source (server) or data-sink (client) it 
is easy to visualize the “next” and “back” steps in a path. Multiple router interfaces (connection 
points to other routers) complicate matters somewhat, especially due to the anonymous nature of 
the interface references.  At some later point, perhaps with the introduction of the TCPF router, 
“round-trip” paths were introduced into the scout architecture.  These routers are essentially a 
bend in the processing path, so those messages that were traveling “up” towards the application 
layer are redirected back “down” towards the device layer. 
 
While the Scout platform was an obvious platform for prototyping such work, the core Scout 
architecture concepts don’t map well onto U-turn paths.  This is unfortunate, as the TCPF router 
and its excellent performance characteristics were the strongest selling point of the Scout 
architecture.  Now that the round-trip router experiments (TCPF and ASP) have demonstrated 
their functionality and performance merits, Scout’s directionality assumptions and end-host-
centric bias need to be reexamined.  A new architecture paradigm is outside the scope of this 
document. 

4 Nature of Problems 

4.1 Debugging Issues 
Cross-platform debugging is never easy.  Embedded system development presents its own set of 
challenges, which the typical debugging environments either take for granted (endian-ness issues, 
executable delivery) or have matured beyond (bootstrap debugging, crash interception).  Scout 
provides a framework for trace statements to be generated during run-time, and provides compile-
time options for consistency checks on some types or message transactions.  We did, however, 
need to augment these diagnostic aids with enhanced memory management routines, improved 
support for gdb on the Alpha platform, and various ad hoc mechanisms for tracking object 
corruption.  Scout is a kernel, and kernel debugging is difficult. 
 
The Alpha platform doesn’t have powerful hardware-based debug registers needed for some of 
the thornier bug tracing.  One particular instability, which eventually proved to be related to a re-
entrancy problem in the demultiplex path, only exhibited itself on the Alpha processor under 
heavy loads.  The Intel Pentium processor has support for hardware debug registers that allow 
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read-write breakpoints, but the Acenic device associated with the heavy load was not currently 
running under the Intel port.  Only after agonizing divide-and-conquer routines were sprinkled 
throughout the failing path were we able to isolate the errant pointer access.  Once again, Scout is 
a kernel and kernel debugging is difficult.  However, kernel debugging can be more effective 
with appropriate hardware assistance. 

4.2 Device Driver Issues 
In retrospect, we spent too much time focusing on the ATM driver support, which detracted from 
efforts on general high-performance-device support.  As we had made a strategic decision 
midway through the project to direct our attention away from ATM signaling protocols and focus 
strictly on high-speed devices and IP, when the FORE HE622 driver port from Solaris to Scout 
dragged on and on we should have cut our losses and moved directly to Gigabit Ethernet.  It was 
tempting to spend “just one more week” plugging away at the driver, particularly when we were 
able to generate ATM cells in the Scout platform (on transmit).  We were never able to get the 
HE622 card to generate interrupts on receive.  We were never able to find documented diagnostic 
registers in the devices to indicate whether frames were being received and dropped, received and 
buffered but the card wasn’t configured to generate interrupts directly, or whether the card was 
generating interrupts but we were not properly fielding them.  In any event, we currently have a 
send-only ATM firewall, and a well functioning Gigabit Ethernet firewall.  The saying goes: For 
want of a nail, the Kingdom was lost.  In our case, For want of an interrupt, the ATM firewall was 
lost. 

4.3 Workload Characterization Issues 
It is difficult to define the “typical” firewall traffic profile7.  Prior work at TIS and NAI Labs 
generated some “interesting” traffic tools and profiles, which proved somewhat useful in 
comparing ASP to commercial firewall products.  However, traffic characterization is a 
multivariate space without clear definitions or standards.  We eventually decided to sidestep the 
issue and take measurements of homogeneous traffic using the NAI Labs firewall performance 
testbed pictured below.  We suggest that more work needs to be done to develop meaningful 
objective traffic profile characterization metrics. 
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Figure 22 – NAILabs Firewall Performance Testbed 

4.4 Community “Critical Mass” 
As mentioned above, the Scout community hasn’t yet reached the critical mass required for self-
sustaining growth.  Aside from occasional source refreshes from the Arizona team, we pretty 
much had to “go it alone”.  This is not to say that we share none of the blame; feedback to the 
community from the participants is vital to building the community spirit of all involved.  As is 
often the case, project deadlines discouraged us from the extra amount of effort for frequent 
progress reports and source updates to the community.  In addition, there is always the “just one 
more fix before I send this out” dilemma:  often we were on the verge of sending a source release 
to the scout team but chose to delay the release until stability increased. 
 
In hindsight, it would have been useful to include periodic “developer community” releases to the 
project timeline, to drive home the fact that users of open-source software need to take 
responsibility for sharing their improvements with the world.  Frequent periodic releases, even 
with low stability, serve a useful function when there is an expectation of “brittleness” along with 
an expectation of frequent incremental improvements. 

5 Details of Technical Work 

5.1 HE622 Driver Details 
The driver for the FORE HE622 OC-12c ATM card originated as a Solaris network driver.  
Porting this driver was done in two steps: (1) port to a non-Solaris platform using Gnu 
development tools (such as those used on Linux and Scout), and (2) port the now-compilable 
code to run in the Scout environment.   
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The Solaris device driver model provides a number of features not found in typical Linux or 
embedded environments, such as a configuration database and runtime-loadable modules.  Other 
features in the Solaris device driver model are similar to, but not identical to, features that are 
found in a typical kernel environment and in the Scout architecture.   
 
The HE622 device driver (also known as the “ForeThought” driver) provides a full ATM stack, 
including the UNI, CLIP, MPOA, and LANE.  There is a full complement of ATM switching 
protocol support in the HE622 driver.  The Scout port of the ForeThought driver was an iterative 
process, starting from the sample “sdapi” program included in the FORE source code distribution.  
SD-API is a minimal ATM frame transmit/receive application, which uses ATM Permanent 
Virtual Circuits (PVCs) to avoid the switching protocol overhead.  The ASP ATM “router” 
actually wraps SD-API calls to generate and receive ATM cells, then performs simple SNAP 
LLC encapsulation for a rudimentary Ethernet-over-ATM protocol. 
 
Only those features required by the SD-API protocol were actually ported to the Scout platform.  
As the FORE build environment dynamically detects the build tree at compile time, the irectory 
tree was modified to hide those components not included in the build, rather than make extensive 
changes to “Makefiles”.   
 
As the FORE source was obtained under NDA from FORE Systems, we are not able to release 
the whole of the ATM driver.  Instead, the ASP software distribution will include source patches, 
which must be applied to a specific version of the FORE software distribution in order to recreate 
the ASP environment. 

5.2  ACENIC Driver Details 
As it became apparent that the ATM driver support could not be finished in a timely manner, 
development efforts shifted to the creation of a Gigabit Ethernet testbed platform instead. As part 
of this effort, the Linux “AceNIC” driver was ported to both the Linux emulation framework 
within Scout and to the native Scout device driver framework. The native AceNIC driver is able 
to directly manipulate Scout message buffers, thereby avoiding two full-packet copies on receive 
and one on transmit. Accordingly, it is 30% more performant than its emulated Linux counterpart. 

5.2.1 Compatibility 
We currently support cards based on the Tigon I and Tigon II chipsets, including the Alteon 
AceNIC, the 3Com 3C985[B] and the NetGear GA620.  
 

5.2.2 Chipset-Specific Settings 
PCI bus devices are configured by the system BIOS at boot time, so no jumpers need to be set on 
the board.  The system BIOS should be set to assign the PCI INTA signal to an otherwise unused 
system IRQ line.  While it’s possible to share PCI interrupt lines, it negatively impacts 
performance. A 256-byte region of NIC memory can be controlled from the PCI configuration 
space.  The NIC uniquely identifies itself and indicates to the host what it requires in terms of 
memory space, I/O space, bus latency, interrupt routing, and so on. The ASP/Scout kernel may 
modify these values during boot-time resource allocation.  
 
The Tigon chipset can be tuned to wait, upon packet arrival, for additional packets to arrive 
before interrupting the host. This parameter is specified in microsecond clock ticks. Transmission 
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interrupts, i.e. notification that one or more packets have been successfully transmitted, may also 
be coalesced in a similar manner or specified to occur when a maximum number of transmit 
descriptors have been processed. Additionally, the ratio of the NIC’s on-board memory for 
receive versus transmit buffering may be specified. On the 1MB NIC (generally, the only version 
available in recent years), approximately 800 kilobytes is available, and the default ratio is a 
50/50 split. 

5.2.3 Driver Operation 
The Tigon presents six producer/consumer ring buffer interfaces to the host:  

• Transmit descriptors (the “transmit ring”)  
• Receive descriptors optimized for small buffers (the “mini ring”)  
• Standard receive descriptors (the “standard ring”) 
• Receive descriptors for jumbo frames, those with an MTU > 1514 and <= 9014 (the 

“jumbo ring”) 
• Returning processed receive descriptors to the host (the “receive return ring”) 
• Events (the “event ring”) 

 
Events provide a means for the NIC and host to communicate status information “out of band” 
from receive and transmit processing. The NIC communicates firmware status, statistics, link 
state, and error notifications by way of the event interface. 
 
The transmit ring and receive ring are populated with a fixed set of descriptors at driver 
initialization time. At this time the initial set of receive buffers is also allocated. During system 
operation, as receive buffers are consumed by the NIC, new receive buffers are allocated to 
replace those now queued for processing by the host IP stack. Transmit buffers are placed onto 
the transmit ring, and the host producer index is appropriately incremented, whenever the host has 
completed assembly of an outbound packet. It is worth noting here that the Tigon chipset supports 
automatic handling of misaligned buffers, so receive and transmit buffers suffer no alignment 
restrictions other than those imposed by the host architecture. 
 
In accordance with the interrupt tuning parameters in effect, the Tigon chipset will interrupt host 
CPU processing at some point after any NIC receive producer, host transmit consumer, or NIC 
event ring producer index has been updated. In other words, the Tigon will interrupt the host 
when: 

• One or more packets were consumed from a receive ring and subsequently placed on the 
receive return ring 

• One or more queued transmit packets were sent 
• One or more events were posted to the event ring 

 
During interrupt processing, the device driver must refresh the receive source rings (the “mini”, 
“standard”, and “jumbo” rings) with new buffers as required. It must remove any buffers placed 
by the NIC onto the receive return ring, and queue those buffers for processing by the host IP 
stack. The driver also must remove those buffers on the transmit ring, if any, which the NIC 
indicates have been successfully sent. Finally, it must acknowledge any events placed on the 
event ring. 

5.2.4 Porting Issues 
The original Linux device driver’s interrupt handler allocated memory out of the interrupt code 
path, in a background thread of control scheduled periodically as needed. The ASP/Scout 
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AceNIC driver does the same. In order to avoid starving the NIC under heavy load, however, it is 
necessary to force allocation of new buffers within the interrupt code path when a minimum 
threshold is reached. As the original Scout system services for allocating and freeing heap 
memory were not reentrant, we were forced to disable hardware interrupts during manipulation of 
critical data structures from these routines. This is an incomplete solution to a problem discovered 
late in the development of ASP. Scout requires a more robust memory management mechanism. 

5.3 Hardware Acceleration Options 
Owing to the original plan to incorporate ASP technology inside an ATM switch, but the loss of 
access to such switches, we continued through the life of the project to explore hardware-
integration plans.  Plausible integration targets do exist, particularly the Marconi SA400 device.  
The SA400 is a descendant of the NSA-developed CellBlock architecture: providing high-speed 
cell matching and forwarding. This Marconi product is an ATM firewall accelerator, which is 
implemented largely in Field Programmable Gate Arrays (FPGAs).  We were able to obtain, 
under NDA, portions of the VHDL code which implements the cell matching and ATM/IP state 
following algorithms. 
 
Using this VHDL code as a model for the kinds of operations available inside the SA400 device, 
we sketched paper designs which could eventually be used to implement first a hardware-assisted 
Network Address Translation device (Figure 23), and with slight refinements a hardware-assisted 
IPCUT engine (Figure 24). 

 
Figure 23 - Hardware Assisted NAT 
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Figure 24 - Hardware Assisted IPCUT 

We plan to keep these designs in mind for future high-confidence networking research.
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